Aim

To study normal modes of oscillations of two coupled pendulums and to measure the frequncies of these normal modes, as well as the spring constant k.

Apparatus

- Two compound pendulums
- Coupling spring
- Stop watch

The Set-up

 Uncouple the two pendulums (remove the spring) and bring the peg to which the spring is attached at the bottom.

• Set small oscillations in both the pendulums individually and measure period T for 20 oscillations. Calculate natural frequency ω_0 .

• The height I (10, 15, and 20 cm) of the peg to which spring is attached is measured from the mid point of the peg to the pivot.

• Hook the spring at I=10 cm. Make sure the spring should neither slack nor stretch.

• Displace both the pendulums SLIGHTLY in one direction by the same amount to excite the in-phase normal mode. Calculate T_1 and ω_1 for 20 oscillations.

• Now displace both the pendulums SLIGHTLY in opposite directions by the same amount to excite the out-of-phase normal mode. Calculate T_2 and ω_2 for 20 oscillations.

Repeat the procedure for I=15 cm and I=20 cm.

- Set l=10 cm.
- Displace any one pendulum by a small amount.
- Measure T for a single (one) oscillation.
 (For this, measure T for 20 oscillations and divide the number by 20.)
- Measure time period ΔT between two successive stops of the same pendulum.
- Using these T and ΔT , verify the frequencies, ω_1 and ω_2 , measured in part I.

Calculations and Graphs

- Plot $\frac{\omega_1^2}{\omega_0^2}$ versus l^2 and $\frac{\omega_2^2}{\omega_0^2}$ versus l^2 .
- From the slope of $\frac{\omega_2^2}{\omega_0^2}$ versus I^2 , calculate the spring constant of the coupling spring.

Slope = 2k/mgL

